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We use a deterministic age-structured susceptible, exposed, infected, recovered (SEIR) model to 

estimate the impact of interventions and behavioral changes to reduce COVID-19 transmission to 

date as well as to project the number of people with COVID 19 needing hospitalization, critical care 

and the number of deaths in Colorado under different intervention scenarios. The model has been 

calibrated to Colorado-specific COVID-19 metrics and demographics. Site-specific model 

parameters are fit to Colorado COVID-19 hospitalization data, and time-varying parameters are 

updated weekly. The model can be used to project the number of hospitalizations, ICU need, and 

deaths in the coming months, under different intervention scenarios, including changing levels of 

social distancing, mask wearing, and introduction of contact tracing.  This documentation describes 

the model, data sets used, and key assumptions and their bases.  

Model structure 

In the model exposed individuals incubate infections for 4.2 days before becoming infectious. This 

is based on evidence that the incubation period for SARS-CoV-2 (the time between infection and 

symptom onset) is approximately 5.2 days [1-3], and that individuals are infectious before 

symptom onset [4-7]. Presymptomatic infectiousness is currently thought to be greatest in the day 

before symptom onset [8] and thus we assume 1 day of presymptomatic infectiousness among 

individuals who become symptomatic. Infected individuals can be either symptomatic or 

asymptomatic. The infectious period is the same regardless of symptoms and lasts for 9 days [6, 8]. 

Both the latent period and infectious period are exponentially distributed in the model. The model 

accounts for evidence that asymptomatic individuals are probably less infectious than symptomatic 

individuals [9], including includes a ratio of transmission probability for symptomatic vs. 

asymptomatic individuals which is estimated via model fitting (described below). 

We developed an age-structured model with four separate age compartments (0-19, 20-39, 40-64, 

and 65+) based on evidence that the probability an infected individual develops symptoms [10] and 

the probability a symptomatic individual is hospitalized [11-13] are age-dependent. We used 

Colorado demographic data for 2016 from the US Census to define age and population structure 

and adjusted for a 9% relative population increase since 2016 based on current estimates of 

population growth in the area. We estimated age-dependent probabilities that an infected 

individual is symptomatic, estimating the product of the age distribution of Colorado within each 

age-compartment and the age-group-specific symptomatic fraction as shown in Table 1 ([10], 

personal communication). We used Colorado COVID-19 hospitalization and intensive care unit 

(ICU) data to estimate the probability of hospitalization and ICU need for each age group using 

model fitting techniques (Table 1). Symptomatic cases that require hospital care are moved into 



either a non-ICU hospitalized, or ICU compartment 8 days after the onset of symptoms [3]. We 

assume that the average length of hospital stay is dependent on both age and whether or not critical 

care is required. These values are based on hospital data for COVID-19 patients in Colorado through 

mid-June (Table 2). In the model, no further transmission occurs once the patient enters the 

hospital.  

 

 
 
Figure 1. The base structure of the SEIR model. The model is age-stratified, with separate compartments for each 
of four age groups 0-19, 20-39, 40-64, and 65+. The symptomatic infected compartment includes a 1-day period 
where individuals are infectious but not yet symptomatic. 
 
 
Table 1. Probabilities of symptoms, hospitalization and critical care need by age group. The probabilities of 
hospitalization are Colorado-specific estimates, derived from fitting age-specific hospitalization curves from the 
model to COVID-19 hospitalization data with onset date on or before March 27. COVID-19 hospitalization data 
sources and model fitting methods are described, below. 
 

Age Category Proportion of infected 
individuals that develop 

symptoms from [10] 

Probability of non-ICU 
hospitalization given 

symptomatic 

Probability of needing 
ICU given symptomatic 

0-19 0.11 0.01108 0.00486 

20-39 0.36 0.03139 0.01140 

40-64 0.56 0.04711 0.02153 

65+ 0.77 0.05825 0.05656 

 
 



Table 2. Length of stay and mortality by age category and ICU vs non-ICU hospitalization from Colorado-specific 
COVID-19 hospitalizations based on 3,947 patients hospitalized through June 2020, and COVID-19 case reports 
through June 22 provided by CDPHE. 
 

Age 
Category 

Mean length of 
non-ICU 

hospitalization 
(days)* 

Mean length of 
ICU stay (days) 

Probability of 
death among 
hospitalized 

patients that don’t 
need ICU care 

Probability of 
death among 
hospitalized 

patients requiring 
ICU-care 

Probability of 
death among 

non-hospitalized 
reported cases** 

0-19 3.6 4.4 0.0000 0.0417 0.000007 

20-39 4.6 7.3 0.0000 0.0392 0.000013 

40-64 6.8 11.4 0.0045 0.1543 0.000113 

65+ 9.7 9.9 0.0923 0.3956 0.003028 

*Mean length of ICU stay is the mean time a COVID-19 ICU patient spends in the ICU. As ICU patients spend some 
time in the non-ICU as well, we account for this as follows. Non-ICU length of stay was calculated as non-ICU 
patient’s length of stay plus the difference between total length of stay and ICU length of stay for ICU patients, 
multiplied by the proportion of hospitalized patients that enter the ICU.  
** Using CDPHE COVID-19 data as of June 22, non-hospitalized mortality was calculated as the proportion of all 
non-hospitalized cases with symptom onset date on or before June 8 who died, by age strata, then adjusted for 
assumed case detection rate at the time of death.   

 
Mortality is based on the probability of death based on age and hospitalization status (ICU, 

hospitalized without ICU care, not hospitalized) (Table 2) and ICU capacity. We estimated 

probability of death for hospitalized COVID-19 patients based on hospital data for COVID-19 

patients in Colorado through mid-June. Mortality among non-hospitalized COVID-19 cases was 

calculated as the proportion of all non-hospitalized cases with onset date on or before June 8th who 

died, by age, then adjusted for assumed case detection rate at the time of death, using reported 

COVID-19 case data in Colorado through June 22.  We estimate additional mortality will occur if 

hospital capacity is reached. We assume that once available ICU beds are full, all cases requiring ICU 

in excess of availability will die. ICU bed capacity is set at 1,800 beds. Recent estimates of ICU use 

when elective surgeries are cancelled indicate that approximately 1,800 ICU beds would be 

available for COVID 19 patients, noting that hospitals may increase surge capacity in coming 

months.  

Recovered individuals are assumed to remain immune to infection. We assume random population 

mixing, and that infection probability does not vary by age or sex. The model assumes a single 

introduction event occurring on January 24, which we extrapolated from the first reported cases in 

Colorado and estimates of under-reporting in early stages of the outbreak. There are no additional 

importations, migration, or non-COVID-19 related deaths in the system.  

Interventions included in the model  

The model includes four interventions that have been implemented in Colorado to slow the spread 

of infections: 1) social distancing; 2) mask wearing; 3) case isolation and 4) contact tracing.  

Social distancing. Social distancing measures were adopted in Colorado starting in mid-March to 

reduce person-to-person contacts and slow the spread of infection. We model social distancing 

using a parameter that describes the percent decrease in effective contacts between susceptible and 

infectious individuals. This parameter accounts for social distancing policies intended to avoid 



contact altogether (e.g., through workplace and school closures) as well as policies and individual 

behaviors to reduce potential contact with the virus (e.g., maintaining at least 6 feet of distance 

between people outside of one’s household, and handwashing). To account for the changes in the 

degree of social distancing over time in relation to policy measures, we model five phases of social 

distancing to date.  

• Phase 1 (3/17-3/25): Social distancing measures were implemented in Colorado starting in 

mid-March in Colorado. Ski resorts were closed on March 14, many schools by March 16, 

and bars, restaurants, theatres and casinos were closed March 17. For the purpose of the 

model, we assign a start date of March 17.  

• Phase 2 (3/26-4/26): State-wide stay at home order, which began on March 26 and ended 

on April 26.  

• Phase 3 (4/27-5/8): Safer at Home for half of Colorado. Colorado transitioned to Safer at 

Home on April 27 but six of the seven counties of the Denver metro region, comprising 

approximately 50% of the Colorado population were under a regional stay at home policy 

through May 8.  

• Phase 4 (5/9-5/26): Safer at Home state-wide. As of May 9, all of Colorado was under Safer 

at Home policies, while some counties have been granted variances that allow for opening 

of additional businesses across this period.  

• Phase 5 (5/27-present). Safer at Home with more businesses open. The state has gradually 

opened businesses and allowed other activities over the month of May with, for example, 

restaurants opening at reduced capacity on May 27 and children’s summer camps opening 

on June 1.  

These five phases are based on state level policy, but due to changes in individual-level behavior 

and risk perception, policy-based cut-points may not be the most accurate way to distinguish 

variations in transmission intensity over time. In order to account for greater variation, we fit the 

social distancing parameter to data using weekly cut-points, so that an individual estimate of social 

distancing level was obtained for each week, beginning Aril 27th. These weekly estimates were 

averaged within the policy-based phases described above to obtain average social distancing within 

those time periods. Social distancing is assumed to reduce the contact rate these five phases equally 

across all age groups. We will revisit this assumption in future model updates. 

Mask wearing. As of April 4, Coloradoans had been advised to wear masks at work and in public. 

Masks can trap viral particles shed by infectious individuals and prevent their transmission to 
others. We model the effectiveness of mask wearing as a reduction in transmission by 

asymptomatic and presymptomatic individuals based on current evidence [14, 15].  The 

effectiveness of mask wearing depends on both the ability of the mask to trap viral particles and the 

proportion of the population wearing masks appropriately. We assume cloth face masks are 

approximately 50% effective at trapping viral particles shed by infectious individuals [14, 15], 

cautioning that there remains considerable uncertainty about this assumption. We also assume that 

masks impact the transmission risk for contacts outside of the household. Prior studies have 

estimated that approximate 23% of a person’s respiratory-virus relevant contacts occur at home 

[16]. In light of evidence that people are spending more time at home during the COVID-19 

pandemic, we assume that 33% of an individual’s contacts are with household members - mask 

wearing outside the home is assumed to impact the approximately 67% of total contacts that are 

outside the home. Recognizing that some transmission may also be occurring via fomites (including 



via touching masks), we use the aforementioned assumptions to model the effectiveness of masks 

as a 30.2% reduction in infectiousness by asymptomatic individuals that wear masks. Additionally, 

we assume mask wearing reduces presymptomatic transmission by infected individuals who will 

ultimately become symptomatic. This is modeled as a net 3.77% reduction in infectiousness among 

symptomatic individuals that wear masks, assuming an individual who ultimately becomes 

symptomatic is infectious for 9 days and asymptomatic for the first day. Our model does not 

account for potential reduction in infectiousness by symptomatic individuals by wearing masks, as 

most are assumed to be isolated, but we note that this would result in an additional benefit of mask 

wearing [17]. We assume 50% of the population began wearing masks in public beginning on 4/4, 

borrowing the assumptions of [14], coinciding with the Governor’s press conference advising 

Coloradoans to wear masks. We assume the proportion of people wearing masks is 70% starting 

April 27, the date that mask wearing became mandatory in public spaces in the Denver metro 

region, based on recent survey data indicating high levels of mask wearing in Colorado [18].  

Symptomatic Case isolation. Since the beginning of the pandemic, individuals with symptoms 

consistent with COVID-19 have been encouraged to stay home and self-isolate in order to prevent 

the spread of infections. The effectiveness of this strategy depends both on the time between the 

onset of infectiousness and containment, as well as the percent of symptomatic cases contained, 

and the ability to isolate from household contacts. We assume case isolation reduces transmission 

by symptomatic individuals to non-household contacts only (estimated to be 67% of total contacts) 

during the symptomatic, infectious period (8 of 9 infectious days). Case isolation is assumed to 

begin on March 5, the date the first COVID-19 cases were reported in Colorado. We note that the 

population of symptomatic cases contained may include people who have symptoms but have not 

tested positive. Our estimate of the proportion of cases that self-isolate is based on model fitting.  

Contact tracing. Contact tracing has been proposed as a key strategy for controlling the spread of 

COVID-19 and is being implemented progressively throughout Colorado. We include contact tracing 

in the model to project the potential impact of contact tracing on COVID-19 in Colorado based on 

the methods of others [19, 20]. We point out that numerous assumptions need to be made on key 

model parameters, absent Colorado-specific data at this time. Contact tracing is only included in 

model projections. 

Contact tracing is incorporated in the model through inclusion of an additional compartment in 

each age category, the Isolated Infectious compartment (II), as per [20]. Individuals who move to 

the isolated infectious compartment are exposed and infectious individuals who have been 

identified by public health officials, are told to quarantine, and comply. Infectious individuals are 

removed from both the I (symptomatic) and A (asymptomatic) compartments to the II 

compartment at the following rate: pID*pCT*κ*π*ω. These parameters are as follows: 

• pID is the proportion of total infections, including asymptomatic and symptomatic, that are 

detected by public health authorities (see Estimating the proportion of cases detected, 

below). 

• pCT is the proportion of detected cases traced. This value is dependent on contact-tracing 

capacity and the current infection rate. With a current detection rate of ~250 symptomatic 

cases/day and current theoretical contact tracing capacity of 165 cases/day, this is 

currently estimated at 0.66. However, as there is limited data on the true current contact 

tracing capacity throughout the state of Colorado, we allow this figure to vary from 0.2 to 

0.8 to demonstrate the impact of increasing tracing capacity. This figure will be updated in 



the future as data on capacity becomes available. Unless stated otherwise, we assume pCT = 

0.4 for all other contact tracing projections. 

• κ is the average number of contacts per identified infectious individual. This value varies 

based on the definition of a contact, as well as the level of social distancing in a society. 

Current estimates from contact tracing vary from 20 (South Korea) to 3.5 (San Francisco) 

based on conversations with representatives of these programs. This number is dampened 

by the proportion of individuals successfully traced (estimates from San Francisco = 

~70%), as well as the proportion of contacts who comply with quarantine. For the purpose 

of the current model, we examine the average number of contacts who are successfully 

traced as well as comply with quarantine, values ranging from 1 to 5. When not explicitly 

varying the number of contacts, we hold the value constant at 3. 

• π is the probability that a traced infectious contact is isolated before infecting other 

susceptible individuals. This value is dependent on the lag between symptom onset and 

case report to health authorities, as well as the amount of time it takes for contact tracing to 

occur after a case is reported. In Colorado, we typically see a lag of approximately 7 days 

between symptom onset and case report – which translates to an average of 8 days between 

the onset of infectiousness and report. Assuming contacts are reached within the targeted 

24 hours of case report, for any infectious contacts that occurred in the 9 days of case 

infectiousness, on average 5/9 of those days could have led to an infectious contact that 

could have infected another individual in those 5 days between onset of infectiousness and 

tracing. Likewise, with a 48-hour lag between report and contact, on average 6/10 of the 

case-infectious days could have led to an infectious contact that could have infected another 

individual. We model π for 24, 48, and 72-hour lags in contact tracing, and assume an 

average of 48 hours for all contact tracing models when not explicitly stated otherwise. 

• ω is the probability a contact-traced individual is infected and has been estimated from the 

literature [6, 21-25]. Estimates for secondary attack rates among household contacts range 

from 4.6% to 19.3%, and among non-household contacts range from 0% to 0.55%. We use 
the approximate average 9% secondary attack rate among household contacts and 0.275% 

attack rate among non-household contacts. We assume the average individual has two 

household contacts, and, if those are the most likely individuals to be successfully traced. 

Thus, if only 2 contacts are traced per case, both are likely to be household, and we use the 

household secondary attack rate of 9%, however, if 4 contacts are traced, half are assumed 

to be non-household contacts, and we assume the secondary attack rate is the average of 

the household and non-household rate at 4.6%. When not explicitly varying the number of 

contacts successfully traced, we hold the value of κ constant at 3, with the assumption of 2 

household contacts and one non-household contact ω is estimated at 6.1%.  

Parameter estimation 

We use model fitting methods to estimate the parameter values which may vary regionally and/or 

for which there is considerable uncertainty in the current literature. The model-fitting process 

involves comparing model outputs to observed COVID-19 hospitalization data in Colorado in order 

to align estimates. 

Hospitalization data. We use hospitalization data to fit our model as this is seen as a more stable 

indicator of COVID-19 transmission and is not sensitive to changes in testing capacity. The total 

hospitalizations (ICU + non-ICU) as predicted by the model are compared to Colorado COVID-19 



hospitalization data provided by CDPHE and the EMResource hospital census of hospitalizations. 

For model fitting, we use reported COVID hospitalizations with hospital admission dates through 

April 7 provided by CDPHE and the EMResource hospital census of hospitalizations starting 04/08 

because the EMResource hospital census appeared to undercount COVID-19 hospitalizations before 

that date.  

Model fitting. Best-fitting parameter values were identified via a least squares cost function 

minimizing the comparison between the estimated proportion of expected cases that would be 
detected in the model and the number of confirmed COVID-19 cases in Colorado (Figure 1). The 

cost function was minimized using a two-stage fitting algorithm in R, first applying a pseudo-

random optimization algorithm [26] to find a region of minimum difference between the model and 

the data. The second phase used least squares optimization applying the Levenberg-Marquardt 

algorithm [27]. 

In order to fit the model to hospitalizations early in the epidemic, the rate of infection (beta), 

proportion of symptomatic individuals that self-isolated after March 5 (siI), and the proportionate 

increase in transmission comparing symptomatic to asymptomatic infections (lambda) were fit 

using data on hospitalizations up to March 27. Priors for hospitalization rates came from [11]. 

Given the parameter values for Beta and lambda, we estimated age-specific hospitalization and ICU 

rates, fitting the curves to the initial phase of the epidemic for CDPHE reported hospitalizations 

with onset date on or before March 27. These estimates were aligned to the age groupings in the 

model: 0-19, 20-39, 40-64, and 65+.  

Estimating the course of COVID-19 transmission to date 

Estimating social distancing to date. Model fitting using the same algorithms described above is 

used to estimate the level of social distancing (measured as a percent decrease in effective contacts) 

during each phase of the epidemic in Colorado to date. These phases do not align perfectly to 

human behavioral changes or policy changes that effect transmission, particularly following the end 

of Stay at Home. For example, Colorado gradually opened businesses over the months of May and 

June. As such we estimate the level of social distancing on a weekly basis, starting from the end of 

the stay at home orders (April 27), in order to obtain estimates of the effects of different 

intervention phases. Recognizing that the weekly estimates may capture stochasticity in 

transmission, we present the averages of the weekly social distancing parameters for Phases 3 to 5.  

Estimating proportion of infections detected. We estimate the proportion of SARS-COV2 

infections (including both asymptomatic and symptomatic infections) that are being captured by 

Colorado state surveillance systems over time based using the SEIR model outputs of the daily 

number of new infections (symptomatic + asymptomatic). We compared this output to the number 

of cases captured by state surveillance systems. We used the number of cases reported by CDPHE, 

using the onset date of symptoms or, if this is not available, the date of report minus 7 days based 

on typical lags for the infection. The ratio of reported cases to model output gives us the estimated 

proportion of infections detected. 

Estimation of the effective reproductive number. To compute the effective reproductive number 
(Re) for the age-structured model, we followed two separate processes. The first follows the 
process outlined in [28]. The Colorado model includes 4 age categories as well as subcompartments 
for exposed, asymptomatic, and symptomatic individuals.  We consider all 12 compartments which 



contain infected individuals and collect them in a vector. Roughly speaking, the matrix that updates 
the population numbers in the vector is called the Next Generation Matrix.  The dominant 
eigenvalue for this matrix is Re, which we thus compute at each timepoint. We additionally 
estimated Re from the model output alone (as opposed to using parameter values, as with the 
former method), giving a partially smoothed estimate akin to the methods of [29]. To estimate Re 

from model output we calculated an approximate (4-day average) estimate of individuals newly 
exposed on a given day and divided by the number of infectious individuals four-days prior, divided 

by the length of the infectious period (equation below).  

 

Current parameter estimates and estimates of the reproductive number are described separately: 

see Parameter estimates and model fit. 

Because we base our parameter estimates on COVID-19 hospitalization data, our estimates of the 

current state of COVID-19 in Colorado reflect the state of infections occurring approximately 2 

weeks prior. This because there is an approximately 13-day lag, on average, between infection and 

hospitalization. Hospitalization data is a robust indicator of transmission trends, as reported 

COVID-19 case data are sensitive to testing capacity and consequently may represent a variable 

proportion of actual infections over time when testing capacity is changing, however it is important 

to recognize that hospitalizations today reflect infections generally occurring two weeks ago. 

The model is updated approximately weekly with to re-estimate time-varying parameters including 

social distancing and the proportion of infections detected.  

Projecting the future course of COVID-19 in Colorado 

The SEIR model, using the most recent parameter estimates, are used to drive the model and 

generate projections of the estimated number of cases, hospital needs and deaths in the future. 

Model projections are generated based on scenarios – or “what ifs.” For example, projections can be 

generated to evaluate the estimate number of hospitalizations if social distancing is relaxed or 

contact tracing is pursued. We assume a start date of these interventions of 13 days before the last 

model fit, accounting for the lag between infections and hospitalizations. 

The Shiny App allows generation of projections varying the four key interventions available to 

control COVID-19. This includes 

• Social distancing. In model projections, the degree of social distancing can be varied at 

different points and time and for different age groups. For example, one can evaluate 
changing social distancing in two phases: 1) the present through mid-August and 2) from 

mid-August forward, corresponding with the start of school. Given CDC recommendations 

that older adults adopt extra precautions to avoid getting COVID-19, projections can be 

generated assuming a proportion of older adults adopt high levels of social distancing 

(80%). The remainder are assumed to adopt the same social distancing levels as the general 

public. 

• Mask wearing. The percent of the population wearing masks can be varied. 



• Case isolation. In model projections, projections can be generated to evaluate the potential 

impact of increased case isolation due to increased testing capacity (assuming those who 

test positive are more likely to self-isolate). This is modeled as an increase in case detection 

and isolation of 5% per week, to a maximum of 80% of all symptomatic cases self-isolating.  

• Contact tracing. Contact tracing can be modeled varying the number of contacts traced per 

identified case and the average time lag between case identification and the containment of 

contacts. 

Caveats and limitations. While our model of SARS-CoV-2 is based on current scientific literature, 

the science is evolving rapidly, and our understanding of this virus is incomplete. The current 

model does not account for any seasonal variation in the infectiousness of SARS-CoV-2 and the 

associated illness of COVID-19. There is evidence to suggest that seasonal changes typically 

associated with the summer season in temperate climate regions (rising temperature and 

humidity) may reduce SARS-CoV-2 transmission.  Several recent studies assessing the impacts 

of temperature and/or humidity on COVID-19 transmission have suggested that low temperatures 

and low humidity are the most favorable conditions for transmission, with a general decreasing 

trend in infections found to be associated with rising temperature, humidity or both [30-35]. This is 

consistent with other studies of temperature and humidity trends and the winter-

dominant seasonal pattern that has been previously identified for influenza strains [36-38] as well 

as other closely related beta-coronaviruses [39-41]. The magnitude of any seasonal impact is not 

well characterized but if present, may slow transmission in the summer months and accelerate 

transmission in the winter months. Additionally, our understanding of immunity to SARS-CoV-2 is 

incomplete and we do not yet fully understand how long an individual is immune to the virus 

following infection or how immunity varies among previously infected populations.  

The current model also does not account for potential changes in hospital capacity due to influenza. 

In severe influenza years, patients hospitalized with influenza can comprise a substantial 

proportion of ICU beds. We are developing scenarios that estimate hospital and ICU capacity in 

severe and mild influenza years which can be used to better estimate hospital capacity in the winter 

months. 

The model assumes random mixing in the population, a common assumption in transmission 

models, however, in reality, people do not mix randomly, and non-random mixing may lead to high-

risk subpopulations that are not well characterized in this model [42, 43].  

Code 

Code for our models is posted on Github: https://github.com/agb85/covid-19 

 

 

  

https://github.com/agb85/covid-19
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