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We use a deterministic, age-structured susceptible, exposed, infected, recovered (SEIR) model to 

estimate the impact of interventions and behavioral changes on COVID-19 transmission to date as 

well as to project the number of people with COVID 19, those needing hospitalization and critical 

care and the number of deaths in Colorado under different scenarios. The model has been 

calibrated to Colorado-specific demographics and Colorado-specific COVID-19 data. Site-specific 

model parameters are fit to Colorado COVID-19 hospitalization data, and time-varying parameters 

are updated weekly. This documentation describes the model, data sets used, and key assumptions.  

Key model updates 

The model has been updated to include the impact of variants and vaccination on the risk of 

hospitalization. Specifically, we have now included functionality for vaccination to decrease the risk 

of symptomatic disease, hospitalization, and death among vaccinated individuals who are not 

protected from infection. We have additionally added in structure to simulate the impact of 

increasing prevalence of variants of concern (VoC) in Colorado, including B.1.1.7 and 

B.1.427/B.1.429.  

Variants of Concern 

Variants are assumed to affect the transmission rate, as well as the risk of hospitalization and death. 

Variants are allowed to affect transmission rate by including a multiplier to beta:  

(𝑝𝑣𝑎𝑟1 ∗ 𝜃1) + (𝑝𝑣𝑎𝑟2 ∗ 𝜃2) + (1 − (𝜃1 + 𝜃2)) 

Where 𝑝𝑣𝑎𝑟𝑖 is the proportionate increase in transmission due to a given variant, and 𝜃𝑖 is the 

proportion of infections in the population estimated to be attributable to that variant. Currently the 

model is set up to include B.1.1.7 and B.1.427/B.1.429 but could be expanded to account for other 

variants. Similar weighting is used to alter the risk of hospitalization and death in the model, 

accounting for the variant-specific increase in hospitalization or death and the proportion of 

infections attributed to the variant in the population. 

We use data from CDPHE on the estimated prevalence of VoC to fit the model under the assumption 

of VoC-related increase in transmission, hospitalizations and deaths. By fitting to known prevalence 

of VoC, we can estimate the level of transmission control attributable to policy and behavior, 

accounting for VoC, or TCPB. We can use TCPB to estimate overall levels of transmission control (TC) 

as well as to estimate the difference between observed TC and what TC would have been without 

the presence of the VoC.  



Model structure  

In the model, exposed individuals incubate infections for 4.2 days before becoming infectious. This 

is based on evidence that the incubation period for SARS-CoV-2 (the time between infection and 

symptom onset) is approximately 5.2 days [3-5], and that individuals are infectious before 

symptom onset [6-9]. Presymptomatic infectiousness is currently thought to be greatest in the day 

before symptom onset [10] and thus we assume 1 day of presymptomatic infectiousness among 

individuals who become symptomatic. Infected individuals can be either symptomatic or 

asymptomatic. The infectious period is the same regardless of symptoms and lasts for 9 days [8, 

10]. Both the latent period and infectious period are exponentially distributed in the model. The 

model accounts for evidence that asymptomatic individuals are probably less infectious than 

symptomatic individuals [11], including includes a ratio of transmission probability for 

symptomatic vs. asymptomatic individuals which is estimated via model fitting (described below). 

We developed an age-structured model with four separate age compartments (0-19, 20-39, 40-64, 

and 65+) based on evidence that the probability an infected individual develops symptoms [12] and 

the probability a symptomatic individual is hospitalized [13-15] are age-dependent. We used 

Colorado demographic data for 2016 from the US Census to define age and population structure 

and adjusted for a 9% relative population increase since 2016 based on current estimates of 

population growth in Colorado. Age-dependent probabilities that an infected individual is 

symptomatic were generated from the literature, estimating the product of the age distribution of 

Colorado within each age-compartment and the age-group-specific symptomatic fraction as shown 

in Table 1 ([12], personal communication). Table 1 also shows the probability of hospitalization 

among symptomatic individuals for each age group. These were estimated using Colorado COVID-

19 hospitalization and intensive care unit (ICU) data and model fitting techniques, described below. 

Symptomatic cases that require hospital care are moved into  the hospitalized compartment 8 days 

after the onset of symptoms [5]. We assume that the average length of hospital stay is dependent on 

age and is calculated from hospital LOS data. These values, shown in Table 2, are based on hospital 

data for COVID-19 patients in Colorado through the end of January. With growing evidence that 

length of stay has declined since the beginning of the pandemic, we estimate two values for each 

age group: mean length of stay for March – July, and mean length of stay August – present. Data on 

length of stay by age and month are shown in Appendix Table 1. In the model, no further 

transmission occurs once the patient enters the hospital.  

 



 
 
Figure 1. The structure of the SEIR model. The model is age-stratified, with separate compartments for each of four 
age groups 0-19, 20-39, 40-64, and 65+. The symptomatic infected compartment includes a 1-day period where 
individuals are infectious but not yet symptomatic.  
 

Immunity 

We incorporate temporary immunity into the model by allowing individuals recovered from 

infection (in the R compartment) to transition back into the susceptible (S) compartment at the rate 

of: 

𝑝𝑆𝑖

𝑑𝑒𝑙𝑡𝑎𝐼
+

1 − 𝑝𝑆𝑖

𝑑𝑒𝑙𝑡𝑎𝐴
 

Where 𝑝𝑆𝑖 is the proportion of infections symptomatic for a given age group and deltaI indicates the 

modeled duration of immunity for symptomatic (I) and deltaA asymptomatic (A) infections. The 

duration of immunity can be varied and is allowed to be either the same for symptomatic and 

asymptomatic infection or to be longer after symptomatic infections [16]. Given the structure of the 

model, movements between compartments (from the R to the S compartment, in this case) occur 

with an exponential distribution.  

The duration of immunity is currently unknown, we have elected to be conservative and assume 

immunity is seasonal, as in other human seasonal coronaviruses. We assume deltaI = 360 days and 

deltaA = 180 days.  

Vaccine 

Two vaccines became available in Colorado on December 15th, 2020, with a third (Johnson and 

Johnson) introduced in March. As of 04/21/21, 2,388,773 individuals have received at least one 

dose, and 1,513,001 are fully immunized. The Moderna and Pfizer vaccines require two doses per 



individual and there is evidence that some individuals are immune after the first dose. We have 

incorporated the assumption that these vaccines are 52% efficacious 14 days after the first dose 

and are assumed to become fully effective (90%) 32 days from time of receipt of first vaccine dose 

[1, 2]. The Johnson and Johnson vaccine requires only one dose and is assumed to become 66% 

effective 14 days after administration and become fully effective (72%) 28 days after vaccination 

{Sadoff, 2021 #632}. To account for vaccination in the model, we have added a vaccination 

compartment to the SEIR model (Figure 1, bottom). Individuals are assumed to receive vaccine 

regardless of previous infection status, but the vaccine is only assumed to have an effect among 

individuals in the susceptible or recovered compartments. Utilizing data from CDPHE, vaccinations 

are distributed in the model to reflect data on the daily age-distribution of vaccinations in Colorado 

in the past.  Vaccination is introduced into the model as the number of individuals receiving their 

first dose of vaccine each day. This value is multiplied by vaccine-specific efficacy (as described 

above) and by the proportion of the population vaccinated among whom it is likely to have an effect 

(Susceptible + Recovered / (Total Population – (Vaccinated + dead + hospitalized))). Vaccination is 

also assumed to have an effect on hospitalization and death rates among infectious individuals in 

the model, proportionate to the number of vaccinated individuals who still become infected, such 

that vaccination is assumed to decrease risk of symptoms among infectious vaccinated individuals 

by 50%, decrease risk of hospitalization among symptomatic vaccinated individuals by 50%, and 

risk of death among infected vaccinated non-hospitalized individuals by 50%. Vaccination rates 

have increased steadily overtime and will continue to be updated in the model to reflect current 
vaccination rates in Colorado. Projections of current vaccination depend on current vaccination 

rates and estimates of vaccine uptake by age group. Vaccination is assumed to be transmission 

blocking when effective.  Vaccination is assumed to be highly immunogenic, as duration is currently 

unknown. For these simulations immunity due to vaccination is assumed to last two years. 

Individuals who are vaccinated successfully are assumed to remain immune for two years before 

returning to the Susceptible compartment.  

 
 
Table 1. Probabilities of symptoms by age group.  

Age Category Proportion of infected 
individuals that develop 

symptoms from [12] 

0-19 0.11 

20-39 0.36 

40-64 0.56 

65+ 0.77 

 
Table 2. Probability of hospitalization given symptomatic by age group over time. The probabilities of 
hospitalization are Colorado-specific estimates, derived from fitting age-specific hospitalization curves from the 
model to COVID-19 hospitalization data with onset date on or before November 11. COVID-19 hospitalization data 
sources and model fitting methods are described, below. 

Age Category Probability of 
hospitalization before 

June 18th  

Probability of 
hospitalization June 18th 

- Sep 30th  

Probability of 
hospitalization after Sep 

30th  

0-19 0.022705 0.022705 0.022705 
20-39 0.036565 0.037471 0.023412 

40-64 0.050782 0.049972 0.033124 



65+ 0.078988 0.072478 0.100437 

  



Table 3. Length of hospital stay by age category from Colorado-specific COVID-19 hospitalizations based on 
Colorado COVID-19 patients with hospitalization onset through December 2020. Source data are described in the 
Appendix. 

Age 
Category 

Estimates for hospitalizations beginning 
before August 1st 

Estimates for hospitalizations beginning 
August 1st or later 

 Mean length of hospitalization (days)* Mean length of hospitalization (days)* 

0-19 5.83 5.57 
20-39 6.37 5.23 

40-64 10.54 8.49 

65+ 10.54 8.14 

 
Mortality is based on the probability of death based on age and hospitalization status (Table 3). We 

estimated probability of death for hospitalized COVID-19 patients based on hospital data for 

COVID-19 patients in Colorado from COPHS. Mortality among non-hospitalized COVID-19 cases was 

calculated as the proportion of all non-hospitalized cases with onset date on or before December 

31, 2020 who died, by age, then adjusted for assumed case detection rate at the time of death, using 

reported COVID-19 case data in Colorado through December 31.   

 
Table 4. Probability of death for Colorado COVID-19 case reports through February 5th, 2021 provided by CDPHE. 

Age 
Category 

Probability of death among hospitalized 
COVID-19 patients  

Probability of death among non-hospitalized 
reported cases* 

0-19 0.00551 0.00001 
20-39 0.01472 0.00008 
40-64 0.05751 0.00062 
65+ 0.16057 0.02797 

* Using CDPHE COVID-19 data as of February 8th, non-hospitalized mortality was calculated as the proportion of all 
non-hospitalized cases with symptom onset date on or before December 31st who died, by age strata, then 
adjusted for assumed case detection rate by age.   

 

We assume random population mixing, and that infection probability does not vary by age or sex. 

The model assumes a single introduction event occurring on January 24, which we extrapolated 

from the first reported cases in Colorado and estimates of under-reporting in early stages of the 

outbreak. There are no additional importations, migration, or non-COVID-19 related deaths in the 

system.  

Parameter estimation and source data 

We use model fitting methods to estimate the parameter values which may vary regionally and/or 

for which there is considerable uncertainty in the current literature. The model-fitting process 

involves comparing model outputs to observed COVID-19 data in Colorado in order to infer 

parameter values. 

Hospitalization data. We use hospitalization data to fit our overall model as this is seen as a more 

stable indicator of COVID-19 transmission than case data and is not sensitive to changes in testing 

capacity. The total hospitalizations as predicted by the model are compared to Colorado COVID-19 

hospitalization data provided by CDPHE and the EMResource hospital census of hospitalizations. 

The time series of COVID-19 hospitalizations in Colorado is based on hospitalization data provided 



by CDPHE through April 7 and the EMResource hospital census of hospitalizations starting 04/08 

(EMResource hospital census appeared to undercount COVID-19 hospitalizations before that date). 

EMResource provides a daily census count of hospitalized patients on a given day and is assumed to 

have no built-in data lags.  Because the EMResource provides an aggregate count of all hospitalized 

patients but does not offer information on the age distribution of COVID-19 patients, we 

additionally used CDPHE resource utilization data (“COPHS”) which provides counts of hospitalized 

patients by age group to estimate age-specific hospitalization rates, as described below. The COPHS 

data also provides information on the length of hospital stay for each COVID-19 patient. 

Case data. SARS-CoV-2 reported case data are obtained from CDPHE’s Colorado Electronic Disease 

Reporting System (CEDRS). These data are used to estimate age-group specific levels of 

transmission reduction over time. Reporting of case data is lagged due to lags between onset date 

and report as well as lags between reporting and data entry, we account for this by truncating data 

at 10 days before export date.  

Model fitting. Best-fitting parameter values were identified via a least squares cost function 

minimizing the comparison between the estimated model output and the observed data. For 

example, the number of hospitalizations estimated in the model is compared to the observed 

number of COVID-19 hospitalizations in Colorado. The cost function is minimized using a two-stage 

fitting algorithm in R, first applying a pseudo-random optimization algorithm [17] to find a region 

of minimum difference between the model and the data. The second phase used least squares 

optimization applying the Levenberg-Marquardt algorithm [18]. 

Primary time-fixed parameter estimates. The rate of infection (beta) and the proportionate 

increase in transmission comparing symptomatic to asymptomatic infections (lambda) were fit 

using data on hospitalizations from the early phase of the epidemic (up to March 27). Given the 

parameter values for beta and lambda, we estimated age-specific hospitalization and ICU rates, 

fitting the curves to the initial phase of the epidemic for CDPHE COPHS data with onset date on or 

before March 27.  Priors for hospitalization rates came from [11]. These estimates were aligned to 

the age groupings in the model: 0-19, 20-39, 40-64, and 65+.  

Estimating transmission control (TC). Model fitting using the same algorithms described above is 

used to estimate the level of total transmission control for each two-week period from March 1, the 

date of the first recorded COVID-19 hospitalization in Colorado, up to the current date. The 

transmission control parameter describes the estimated percent decrease in transmission-relevant 

contacts compared to an uncontrolled baseline. TC folds all reductions in transmission relevant 

contact due to policies and behaviors and seasonality into a single parameter. TC is incorporated in 

the model in the equation: beta*(1 – TC), as an effective decrease in contact 

between susceptible and infectious individuals. Due to the average lag time between exposure 

and hospitalizations (~13 days), estimates of transmission control for a given period reflect contact 

rates approximately two weeks prior to the date estimated.   

Estimating transmission control for distinct age groups. In order to examine differences in 

transmission control by age-group, we have augmented our methods using case data.  Case data are 

particularly necessary to examine transmission control in the youngest age groups, for whom 

hospitalization data is sparse. In order to fit models to case data, assumptions about detection rate 

must be made. The detection rate was first assumed to follow the state-wide rates estimated from 

the total hospitalizations model (described below) and model-fitting measures were used.  



Preliminary estimates of age specific transmission control parameters were estimated by 

comparing age-specific incidence curves to age-specific reported case data using the same methods 

applied above. To capture age-group specific differences in detection rates, we then fit the age-

specific TC model to age-specific hospitalizations, allowing us to estimate the daily number of 

infections by age group. We then compared that to the reported cases in order to estimate age-

group differences in detection rate. With age-group specific detection rates, we were then able to 

compare the model estimated cases to age-specific cases detected by CEDRS. We then used the age-

group specific cases to estimate age-specific TC to account for low hospitalization rates among 

younger age groups.  Initially, retrospective age-specific transmission reduction levels were 

estimated using data up to October 12th, and then estimates were refit weekly for the next three 

biweekly parameters. Each week, the last three biweekly parameters are re-estimated. 

Estimating the course of COVID-19 transmission to date 

Estimating proportion of infections detected. We estimate the proportion of SARS-COV2 

infections (including both asymptomatic and symptomatic infections) that are being captured by 

Colorado state surveillance systems over time using the SEIR model outputs of the daily number of 

new infections (symptomatic + asymptomatic). We compared this output to the number of cases 

captured by state surveillance systems. We used the number of cases reported by CDPHE, using the 

onset date of symptoms or, if this is not available, the onset date as imputed by CDPHE. The ratio of 

reported cases to model output gives us the estimated proportion of infections detected. 

Estimation of the effective reproductive number. To compute the effective reproductive number 
(Re) for the age-structured model, we followed two separate processes. The first follows the 

process outlined in [19]. The Colorado model includes 4 age categories as well as subcompartments 

for exposed, asymptomatic, and symptomatic individuals.  We consider all 12 compartments which 

contain infected individuals and collect them in a vector. Roughly speaking, the matrix that updates 
the population numbers in the vector is called the Next Generation Matrix.  The dominant 

eigenvalue for this matrix is Re, which we thus compute at each timepoint. We additionally 

estimated Re from the model output alone (as opposed to using parameter values, as with the 

former method), giving a partially smoothed estimate akin to the methods of [20]. To estimate Re 
from model output we calculated an approximate estimate of individuals from all four age 
categories (i) newly exposed (Et) on a given day and divided by the number of infectious individuals 

three-days prior ((I+A)t-α-1), divided by the length of the infectious period (equation below).  

𝑅𝑒 =
∑

𝐸𝑡
𝛼  4

𝑖

∑
(𝐼 + 𝐴)𝑡−𝛼−1  

𝛾  4
𝑖

 

Current parameter estimates and estimates of the reproductive number are described separately: 

see Parameter estimates and model fit. 

Because we base our parameter estimates on COVID-19 hospitalization data, our estimates of the 

current state of COVID-19 in Colorado reflect the state of infections occurring approximately 2 

weeks prior. The lag in estimation is the result of an approximately 13-day lag, on average, between 

infection and hospitalization. Hospitalization data is a robust indicator of transmission trends, as 

reported COVID-19 case data are sensitive to testing capacity and consequently may represent a 

variable proportion of actual infections over time when testing capacity is changing, however it is 



important to recognize that hospitalizations today reflect infections generally occurring two weeks 

ago. 

The model is updated weekly to re-estimate time-varying parameters including transmission 

control and the proportion of infections detected.  

Projecting the future course of COVID-19 in Colorado 

The SEIR model and the most recent parameter estimates can be used to generate projections of the 
estimated number of cases, hospital needs and deaths in the future. Model projections are generated 
based on scenarios – or “what ifs.” For example, projections can be generated to estimate the number 
of hospitalizations if transmission control remains at the current estimated level or increases or 
decreases. These estimates are generated by using the scenario-defined transmission control value, 
as well as the other most recent parameter estimates, to drive the model and 
generate projections.  Recent projections have included holiday scenarios, examining the impact of a 
decrease in transmission control over the holidays due to increased social gatherings. 
 
Uncertainty in estimation of current parameters including TC and Re. Given that the estimates 
of TC and current Re are subject to substantial uncertainty, we are visualizing uncertainty now 
using 95% Confidence Intervals (95% CI) in estimating TC and other measures at present using 
established methods [21, 22]. We calculate the 95% CIs using Markov Chain Monte Carlo methods 
and sample from the distribution of possible parameter estimates we fit each week [23]. Restating 
in less technical terms, we run thousands of repeats of the model, introducing some statistical 
variation into the model’s variables. This gives us a range of possible parameter estimates for the 
last three TC parameters. When we run the model, carrying out the range of TC estimates, we 
produce a 95% CI for TR, Re, and current prevalence.   

Near-term projections. We also use our model to generate near-term forecasts of cases and 
hospitalization needs over the next two weeks, assuming no change in public health policies or 
public behavior. Infectious disease forecasting is subject to considerable uncertainty – due to 
technical challenges and uncertainties regarding behavior and policy changes over the long-term 
[24, 25]. We focus on generating short-term forecasts over the next two weeks, using established 
methods that describe uncertainty in cases in the estimation process [21, 22].  With regard to the 
technical approach, uncertainty in the projections is obtained by fitting all 16 transmission control 
parameters since March 1st and the date of initial infection using a hybrid optimization approach 
initially using a particle swarm followed by a weighted nonlinear least squares-based Levenberg-
Marquardt constrained optimization algorithm  [18]. An estimated covariance matrix was 
computed via parametric sensitivity computations [26].  A multivariate normal distribution was 
created via using the parameters estimates (as means) and the approximate covariance matrix. The 
predictions were generated via sampling parameters from the multivariate normal distribution and 
10% of the resulting solutions are shown in the figures. 

Caveats and limitations. While our model of SARS-CoV-2 is based on current scientific literature, 

the science is evolving rapidly, and our understanding of this virus is incomplete. For example, we 

do not yet fully understand how long an individual is immune to the virus following infection or 

how immunity varies among previously infected populations [27]. The model assumes random 

mixing in the population, a common assumption in transmission models; however, in reality, people 
do not mix randomly, and non-random mixing may lead to high-risk subpopulations that are not 

well characterized in this model [28, 29].  



Code 

Code for our models is posted on Github: https://github.com/agb85/covid-19 

 

  

https://github.com/agb85/covid-19


Appendix 

The length of time a COVID-19 patient spends in the hospital varies by age, as seen in the Colorado 
hospital data, below. The length of stay for COVID-19 patients that do not require ICU care has 
remained relatively constant over time. We caution there is considerable variability in the length of 
stay by patient. We continue to closely monitor these data and evaluate trends. 

Table A1. Mean length of stay of Colorado COVID-19 patients for ICU and non-ICU hospitalizations 
by age and month based on data provided by Colorado hospitals for patients admitted on or before 
December 31, 2020 with surveillance through February 22nd, 2021. 

Month of 
Admission 

Ages 0 – 19, 
mean 

Ages 20 – 39, 
mean 

Ages 40 – 64, 
mean 

Ages 65+, mean 

ICU Patients (all 
days)* 

 

March 77.2 15.5 20.2 18.3 

April 11.8 16.1 20.6 16.6 

May 5.7 13.2 19.6 14.9 

June 14.6 10.8 18.4 14.7 

July 10.0 9.9 15.8 13.6 

August 15.2 12.6 17.4 15.2 

September 14.4 15.1 15.5 12.9 

October 23.1 13.4 17.2 13.6 

November 4.6 11.3 15.9 14.4 

December 5.8 10.1 15.4 13.0 

Non- ICU 
Hospitalization 

    

March                    1.4             3.5                  4.6                     7.3  

April                    3.2             3.8                  4.9                     7.9  

May                    4.1             5.0                  5.5                     6.3  

June                    3.5             3.2                  5.3                     6.6  

July                    3.7             3.8                  5.5                     7.4  

August                    3.6             5.7                  6.3                     5.8  

September                    3.6             3.5                  5.1                     6.0  

October                    4.8             3.7                  5.1                     6.0  

November                    4.6             4.3                  6.9                     6.7  

December                    4.0             3.8                  4.9                     5.9  

*Includes days spent in the ICU and days spent in non-ICU care in the hospital. 

*Standard deviation was not available for this measure. 
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