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1 Model Structure and Equations

We consider two separate models within the state of Colorado. The statewide LPHA Model
partitions the state into nr = 11 regions, each overseen by its own local public health agency
(LPHA):

1. Central

2. Central Mountains

3. East Central

4. Metro

5. Northeast

6. Northwest

7. San Luis Valley

8. Southcentral

9. Southeast

10. Southwest

11. West Central
Partnership

Within each region, the population is divided into the following four fixed age categories (in
that we do not allow individuals to age out of one category into the next):

1. Age 0 to 19 2. Age 20 to 39 3. Age 40 to 64 4. Age 65 and above

Age categories are referenced by subscripts i, j = 1, 2, 3, 4, while regions are referred to by
parenthetical superscripts (u, v) = 1, ..., nr. For example, X

(u,v)
i would denote the number of

individuals of age i from region u visiting region v whose status with respect to COVID-19 is
X at time t.

Disease transmission and progression is modeled by a system of differential equations, wherein
individuals from a given region transition between a set of compartments describing their
status with respect to COVID-19. Individuals from region u and of age i are classified as
either:

1. Susceptible (S
(u)
i )

2. Exposed (E
(u)
i )

3. Infectious (Symptomatic) (I
(u)
i )

4. Asymptomatic Infectious (A
(u)
i )

5. Hospitalized (H
(u)
i )

6. Recovered, symptomatic (RI
(u)
i )

7. Recovered, asymptomatic (RA
(u)
i )

8. Vaccinated (V
(u)
i )

9. Deceased (D
(u)
i ).

Summing over all age categories and disease compartments within a given region is equal to
N (u), the total population of region u.
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1.1 Incorporating Mobility

In conjunction with the compartment structure within each region, we include inter-regional
travel and the additional pathways for disease transmission this brings about; these features
are included following the model presented in [1]. Individuals leave their home region u at a
per capita rate σ(u). Given that an individual leaves region u, the probability that they travel
to region v is ν(u,v). We require ν(u,u) = 0, and

∑nr

v=1 ν
(u,v) = 1. The per capita rate of return

by residents of u from region v, ρ(u,v), is the reciprocal of the average time (in days) residents
of u spend visiting region v. The rate of travel from one region to another is scaled by a single
mobility factor M ∈ (0, 1] across all regions.

Each of these rates of travel are approximated from mobility data provided by xmode.
Parameters σ(u) and ν(u,v) are estimated from the total number of devices observed traveling
from region u to region v, divided by the total number of devices available to xmode and
categorized as residents of region u. The average time a resident of region u spends visiting
region v is estimated from the total number of hours spent by all residents of region u in region
v over a given week, divided by the number of residents of region u observed to have traveled
to region v over that same week. This average visit time is then converted to a fraction of a
day, and it’s reciprocal is the estimate used for ρ(u,v). The average visit time from one Metro
LPHA county to another is generally between 5 and 8 hours; whereas the average visit time
from one LPHA region to another is generally between 8 and 11 hours. Weekly estimates for
travel parameters are interpolated so that changes in the population spatial distribution occur
on the same days that a new rate of transmission takes effect.

1.2 Derivation of Model Equations for Disease Transmission

The region-specific transmission rate β(u)(t) represents the fraction of interactions between
susceptible and infectious individuals which result in exposure to the virus. Higher β values
are expected in more densely populated areas, and decrease with interventions such as, social
distancing or mask wearing. Susceptible individuals may come in contact with infectious
individuals from any region whether the susceptible individual remains in their home region,
i.e., in the S

(u,u)
i compartment, or is visiting another region, i.e. in the S

(u,v)
i compartment.

We assume that these interactions adopt the transmission rate of the region in which the
contact occurs.

The rate of change in the number of susceptible individuals of age i from region u remaining
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in region u at time t is formulated by,

d

dt
S
(u,u)
i = (number of susceptible residents of age i returning home)

− (number of susceptible residents of age i leaving)

− (newly exposed by infectious residents of u at home)

− (newly exposed by infectious residents of v visiting u at time t)

− (vaccinated) + (temporarily immune becoming susceptible again)

=
nr∑
v 6=u

ρ(u,v)S
(u,v)
i − σ(u)S

(u,u)
i −

(
β(u)(t)

Ñ (u)

)
S
(u,u)
i

[
4∑

j=1

(
λI

(u,u)
j + A

(u,u)
j

)]

−
(
β(u)(t)

Ñ (u)

)
S
(u,u)
i

nr∑
v 6=u

[
4∑

j=1

(
λI

(v,u)
j + A

(v,u)
j

)]
−

(
vac

(u)
i

N̄
(u)
i

)
S
(u,u)
i

+

(
1

dImmuneI

)
RI

(u,u)
i +

(
1

dImmuneA

)
RA

(u,u)
i +

(
1

dV ac

)
V

(u,u)
i .

(1)

Similarly, the rate of change in the number of susceptible individuals of age i from region
u visiting region v at time t is given by,

d

dt
S
(u,v)
i = (number of susceptible residents of u of age i arriving in region v)

− (number of susceptible residents of u of age i returning home from v)

− (newly exposed by infectious residents from any region w in region v at time t)

+ (temporarily immune becoming susceptible again while visiting v)

= σ(u)ν(u,v)S
(u,u)
i − ρ(u,v)S(u,v)

i − β(v)

Ñ (v)
S
(u,v)
i

nr∑
w=1

[
4∑

j=1

(
λI

(w,v)
j + A

(w,v)
j

)]

+

(
1

dImmuneI

)
RI

(u,v)
i +

(
1

dImmuneA

)
RA

(u,v)
i +

(
1

dV ac

)
V

(u,v)
i .

(2)

The total number of individuals present in region u at time t is Ñ (u),

Ñ (u) =
4∑

i=1

[(
Ih

(u)
i + Ic

(u)
i +D

(u)
i

)
+

nr∑
v=1

(
S
(v,u)
i + E

(v,u)
i + I

(v,u)
i + A

(v,u)
i +RI

(v,u)
i +RA

(v,u)
i + V

(v,u)
i

)]
.

Not to be confused with N̄
(u)
i , the number of individuals of age i eligible to be vaccinated,

N̄
(u)
i = N

(u)
i −

(
Ih

(u)
i + Ic

(u)
i +D

(u)
i + V

(u)
i

)
.
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1.3 Equilibrium Assumption

Formulating the model in this way accounts for all possible pathways of disease transmis-
sion. However, it requires that each age-specific disease status compartment (not including
hospitalized and deceased) be divided into nr compartments to keep track of the location of
all individuals. (That’s 3,675 compartments for the full LPHA model!) Including so many
compartments makes parameter fitting exceedingly slow, but we can significantly reduce the
number of compartments (to 443) by assuming that the number of individuals in each region
reaches equilibrium instantaneously.

The total number of individuals from a given region is the sum of individuals from that
region remaining in the region at time t, and those visiting other regions at time t:

N (u) = N (u,u)(t) +
∑
v 6=u

N (u,v)(t). (3)

Since the total population of a given region does not change over time,

dN (u)

dt
= 0 ⇒ dN (u,u)(t)

dt
+
∑
v 6=u

dN (u,v)(t)

dt
= 0,

we can make the assumption that each derivative dN(u,·)

dt
is equal to zero as well, and arrive at

the following system of equations:

dN (u,u)

dt
=
∑
v 6=u

ρ(u,v)N (u,v) − σ(u)N (u,u)

dN (u,v)

dt
= σ(u)ν(u,v)N (u,u) − ρ(u,v)N (u,v).

Setting these equal to zero, we get from the N (u,v) derivative that

N (u,v) =

(
σ(u)ν(u,v)

ρ(u,v)

)
N (u,u). (4)

Inserting this expression into (3) gives,

N (u) = N (u,u) +
∑
v 6=u

N (u,v) = N (u,u)

(
1 +

∑
v 6=u

(
σ(u)ν(u,v)

ρ(u,v)

))

⇒ N (u,u) = N (u)

(
1 +

∑
v 6=u

(
σ(u)ν(u,v)

ρ(u,v)

))−1
.

(5)

Let η(u,v) =
σ(u)ν(u,v)

ρ(u,v)
, and θ(u) =

(
1 +

∑
v 6=u

(
σ(u)ν(u,v)

ρ(u,v)

))−1
=

(
1 +

∑
v 6=u

η(u,v)

)−1
, so that we

may express the number of individuals in each region in terms of the constant total population
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as follows

N (u,u) = θ(u)N (u)

N (u,v) = η(u,v)N (u,u)

= η(u,v)θ(u)N (u)

Ñ (u) = N (u,u) +
∑
v 6=u

N (v,u)

= θ(u)N (u) +
∑
v 6=u

η(v,u)θ(v)N (v)

N̄ (u) = N (u,u) −
(
D(u) + Ih(u) + Ic(u) + V (u)

)
= θ(u)N (u) −

(
D(u) + Ih(u) + Ic(u) + V (u)

)
.

Repeating the above arguments with N (u) replaced by the sum over all age categories and
disease compartments in all locations shows that we can similarly express the regional distri-
bution of each disease compartment in terms of the total. For example, if S

(u)
i is the total

number of susceptible individuals of age i from region u, then,

S
(u,u)
i = θ(u)S

(u)
i , and S

(u,v)
i = η(u,v)θ(u)S

(u)
i .

To be clear, the transition parameters σ(u) and ν(u,v) which form η(u,v) and θ(u) change every
seven days. The assumption we make is that when these parameters change, we reach equi-
librium instantaneously. In making this assumption, we sacrifice continuity in Ñ (u) for model
simplicity. Plotted below are comparisons of the two model approaches.

1.4 Model Equations

Proceeding with the equilibrium assumption, the previously derived expressions (1) and (2)

for d
dt
S
(u,u)
i and d

dt
S
(u,v)
i , respectively, are added to form the differential equation for d

dt
S
(u)
i .

d

dt
S
(u)
i =

d

dt
S
(u,u)
i +

∑
v 6=u

d

dt
S
(u,v)
i

=
nr∑
v 6=u

ρ(u,v)S
(u,v)
i − σ(u)S

(u,u)
i −

(
β(u)(t)

Ñ (u)

)
S
(u,u)
i

[
4∑

j=1

(
λI

(u,u)
j + A

(u,u)
j

)]

−
(
β(u)(t)

Ñ (u)

)
S
(u,u)
i

nr∑
v 6=u

[
4∑

j=1

(
λI

(v,u)
j + A

(v,u)
j

)]
−

(
vac

(u)
i

N̄
(u)
i

)
S
(u,u)
i

+

(
1

dImmuneI

)
RI

(u,u)
i +

(
1

dImmuneA

)
RA

(u,u)
i +

(
1

dV ac

)
V

(u,u)
i

+ σ(u)
∑
v 6=u

ν(u,v)S
(u,u)
i −

∑
v 6=u

ρ(u,v)S
(u,v)
i −

∑
v 6=u

(
β(v)

Ñ (v)
S
(u,v)
i

nr∑
w=1

[
4∑

j=1

(
λI

(w,v)
j + A

(w,v)
j

)]

+

(
1

dImmuneI

)
RI

(u,v)
i +

(
1

dImmuneA

)
RA

(u,v)
i +

(
1

dV ac

)
V

(u,v)
i

)
(6)
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Figure 1: Comparison of changing regional population computed by model version 1 (plotted
in red), with regional compartments, and version 2 (plotted in blue), with the equilibrium
assumption.

The mobility terms (in blue) cancel, since
∑
v 6=u

ν((u,v)) = 1. Further combining like terms

and replacing S
(u,u)
i with θ(u)S

(u)
i , and S

(u,v)
i with η(u,v)θ(u)S

(u)
i , we arrive at the following full

system of model equations.
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Model Equations

d

dt
S
(u)
i = − β

(u)

Ñ (u)
θ(u)S

(u)
i

(
4∑

j=1

(
λθ(u)I

(u)
j + θ(u)A

(u)
j

)
+
∑
v 6=u

[
4∑

j=1

(
λη(v,u)θ(v)I

(v)
j + η(v,u)θ(v)A

(v)
j

)])

−
∑
v 6=u

(
β(v)

Ñ (v)
η(u,v)θ(u)S

(u)
i

) nr∑
w=1

(
4∑

j=1

(
λη(w,v)θ(w)I

(w)
j + η(w,v)θ(w)A

(w)
j

))

−

(
vac

(u)
i

N̄
(u)
i

)
θ(u)S

(u)
i +

(
1

dImmuneI

)
RI

(u)
i +

(
1

dImmuneA

)
RA

(u)
i +

(
1

dV ac

)
V

(u)
i

d

dt
E

(u)
i =

β(u)

Ñ (u)
θ(u)S

(u)
i

(
4∑

j=1

(
λθ(u)I

(u)
j + θ(u)A

(u)
j

)
+
∑
v 6=u

[
4∑

j=1

(
λη(v,u)θ(v)I

(v)
j + η(v,u)θ(v)A

(v)
j

)])

+
∑
v 6=u

(
β(v)

Ñ (v)
η(u,v)θ(u)S

(u)
i

) nr∑
w=1

(
4∑

j=1

(
λη(w,v)θ(w)I

(w)
j + η(w,v)θ(w)A

(w)
j

))
− 1

α
E

(u)
i

d

dt
I
(u)
i =

pSi

α
E

(u)
i − γI

(u)
i

d

dt
A

(u)
i =

(
1− pSi

α

)
E

(u)
i − γA

(u)
i

d

dt
H

(u)
i = γ(chospi)I

(u)
i −

(
1

chlosi

)
Ih

(u)
i

d

dt
RI

(u)
i = γ(1− chospi − dnhi)I(u)i +

(
1− dchi
chlosi

)
H

(u)
i −

(
1

dImmuneI

)
RI

(u)
i

d

dt
RA

(u)
i = γA

(u)
i −

(
1

dImmuneA

)
RA

(u)
i

d

dt
V

(u)
i =

(
vac

(u)
i

N̄
(u)
i

)
θ(u)S

(u)
i −

(
1

dV ac

)
V

(u)
i

d

dt
D

(u)
i = γ(dnhi)I

(u)
i +

(
dchi
chlosi

)
H

(u)
i

(7)
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Description of Parameters

Parameter Description

β(u) Regional transmission rate
λ Difference in infectiousness: symptomatic/asymptomatic
α Incubation period
γ Recovery Rate
pSi Fraction of symptomatic cases
chospi Fraction of cases requiring hospitalization (non-ICU and ICU)
chlosi Length of hospital stay (non-ICU and ICU)
dchi Death rate for hospitalized patients (non-ICU and ICU)
dnhi Death rate for non-hospitalized individuals

dImmuneI
Period of immunity for an individual recovered from a symptomatic
case

dImmuneA
Period of immunity for an individual recovered from an asymptomatic
case

dV ac Period of immunity from vaccination

N̄
(u)
i

Individuals of age i from region u eligible to be vaccinated

vac
(u)
i

Vaccination rate for individuals of age i from region u

Ñ (u) Total number of individuals present in region u at time t

σ(u)ν(u,v) Probability that a resident of region u travels to region v

ρ(u,v) Rate of return for residents of region u visiting region v

θ(u,v) The fraction of residents of region u remaining in region u at time t

η(u)
The ratio of residents of region u visiting region v and those remaining
in region u at time t

η(u,v)θ(u,v) The fraction of residents of region u visiting region v at time t

θ(u)X
(u)
i

Individuals of disease status X and age i from region u in region u at
time t

η(u,v)θ(u)X
(u)
i

Individuals of disease status X and age i from region u in region v at
time t

M
Mobility scaling. This term does not appear in the model equations
(since it is often set to one), but each η is implicitly multiplied by M
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